- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hossain, Tamanna (1)
-
Logan IV, Robert L. (1)
-
Matsubara, Yoshitomo (1)
-
Singh, Sameer (1)
-
Ugarte, Arjuna (1)
-
Young, Sean (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The ongoing pandemic has heightened the need for developing tools to flag COVID-19-related misinformation on the internet, specifically on social media such as Twitter. However, due to novel language and the rapid change of information, existing misinformation detection datasets are not effective for evaluating systems designed to detect misinformation on this topic. Misinformation detection can be divided into two sub-tasks: (i) retrieval of misconceptions relevant to posts being checked for veracity, and (ii) stance detection to identify whether the posts Agree, Disagree, or express No Stance towards the retrieved misconceptions. To facilitate research on this task, we release COVIDLies (https://ucinlp.github.io/covid19 ), a dataset of 6761 expert-annotated tweets to evaluate the performance of misinformation detection systems on 86 different pieces of COVID-19 related misinformation. We evaluate existing NLP systems on this dataset, providing initial benchmarks and identifying key challenges for future models to improve upon.more » « less
An official website of the United States government
